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Peer Review File



REVIEWER COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

This paper introduces new methodology utilizing a hybrid of neural networks and metabolic network 

models for improved prediction of experiments involving metabolic networks. In particular, there is 

novelty in the approach of using physics informed neural networks to introduce a method for 

performing backpropagation to train the hybrid models within the context of constrained optimization. 

The new method is likely to have broad applicability to other metabolic networks not considered in the 

paper, as well as gene regulatory network modeling. I have two minor comments/suggestions for the 

paper: 

 

1) In the results section “AMNs can be used in a reservoir computing framework to enhance the 

predictive power of traditional FBA solvers” the authors utilize their previously trained AMN network 

and parameters as a reservoir within a reservoir computing model. It seems like the authors are 

implying that transfer learning of the learned AMN parameters is crucial for having high predictive 

accuracy of the AMN-reservoir model. However, the usual method for reservoir computing models is 

that the reservoir is simply initialized to completely random weights with some constraints on the 

spectral radius of the matrix encoding the reservoir network. Did the authors try to use random 

initialized weights instead of the AMN pretrained weights? To answer this question, I suggest at least 

some minor computational study showing that it is necessary to use AMN pretrained parameters 

instead of randomly initialized reservoir parameters. Such a study would include various reservoir 

sizes. 

 

2) Neural networks are typically initialized with random weights and biases. Thus, there could be 

variability in the results presented in the paper due to neural network initialization. Both the ANN and 

AMN model predictions might be improved by running the training many times, for example 20 or 30 

times, and taking the best performing result. Did the authors perform their study with randomly 

initializing the ANNs several times, or are the results presented from a single initialization? 

 

 

Reviewer #2 (Remarks to the Author): 

 

Hybrid models enabling neural computations with metabolic networks 

Faure et. al. 

 

The manuscript by Faure and colleagues describes a new approach to modelling metabolic networks 

combining recurrent neural networks and constraint-based modelling (CBM) into a new hybrid 

framework called an artificial metabolic network (AMN). The main advantage of this approach is that 

the input fluxes to CBM can be estimated from data, then FBA applied to predict growth phenotype. 

The authors compare their new framework to more traditional approaches using simulations and a 

dataset comprising of E. coli growth rates in different media compositions. Overall, I really like the 

idea of using RNNs to model the fluxes in metabolic networks. I have some comments below for 

improvement of the manuscript. 

 

1) I don’t believe the title of the manuscript accurately reflects the main points of the paper. The 

manuscript is not about utilising metabolic networks for computation. I think the authors should 

rename it to something more appropriate. 

 

2) I think a visualisation of key parts of Table 1 as a bar chart (or similar) is needed as the table right 

now is very difficult to compare performance of different architectures. 

 

3) In Figure 4 caption, Q2 needs to be redefined. (I presume it is the R2 of the regression). 

 



4) All of the results follow from knowing the exact structure of the metabolic network which is almost 

impossible (CBM and FBA of course also have this problem). How robust are the results to sampling of 

the reactions in the models? Is this approach more or less robust than traditional methods? 

 

 

 

 

Reviewer #3 (Remarks to the Author): 

 

This paper proposes a new type of neural network called 'artificial metabolic networks' (ANN) that 

incorporates a genome scale model into the training of neural networks. I read the paper with great 

interest as I have experience in both domains, and the idea of integrating FBA-type models directly 

into neural network training is interesting and novel. The paper, however, is quite unclear in its 

presentation and demonstrating the utility of the method. Critically, I found the motivation for building 

such models unclear, particularly because it is unclear what specific problem in biological modelling 

question/challenge this algorithm intends to solve. The paper is difficult to follow, as in fact four 

different models are presented and it is difficult to follow the relation between these models and why 

they are needed paper. 

 

Altogether I don't think this paper is suitable for the journal, as the contribution is rather narrow and 

of interest to an FBA-specific audience. As I explain below I would advise the authors to focus on the 

last model 'AMN reservoir' as the main subject, and carry further tests of how this model can 

outperform classic FBA in a wider range of problems (not just prediction of growth rate from media 

composition). This would make the results much more relevant to the general metabolic engineering, 

synthetic biology, and q-bio audiences. 

 

1. The introduction states that AMNs aim to solve some of the caveats of FBA, particularly its inability 

to convert concentrations of growth media components into the boundary fluxes that go into FBA 

calculations. This caveat is real, but I also found that for the results in Fig 4, the media composition 

was featurized as a binary vector, without any information about concentrations. The 4th model 'AMN 

Reservoir' seems to take care of this, but this model is not presented as the main result of the paper. 

Altogether the paper gets confusing at several points and seems appropriate for a readership already 

familiar with the inner details of FBA, not potential users of the algorithm in metabolic 

modelling/engineering. 

 

2. I strongly suggest to focus on AMN reservoir, and take the focus away from the other three 

algorithms AMN-Wt, AMN-LP and AMN-QP. AMN-Wt suffers an important problem when including exact 

bounds (as well explained by the paper) and AMN-LP vs AMN-QP differ their computational 

implementation (linear vs quadratic programming) with no difference in performance (Fig 4). As it 

stands this presentation is more suited for a computer science audience. 

 

3. I struggled to find a clear description of what the inputs to the AMNs are. In all examples it seems 

to be the media composition, but there also extensive references to the boundary fluxes being the 

inputs. This needs to be clarified, perhaps with a figure to replace Fig 1 (which is technical and does 

not help to explain the method). 

 

4. The careful calculations of the gradients are quite clear and the attention to rigour is appreciated. 

Many papers would overlook these mathematical details, but they are important as the authors clearly 

appreciate. I found, however, that the mathematical details in the main text tended to obscure the 

aims of the models and what biological problems can be solved, and what people might use this 

algorithm for. 

 

5. The Q2 accuracies in Fig 4 are not particularly exciting (~0.78 for all methods), but I think a much 

better benchmark would be to compare it to the variability in the experimental repeats as opposed to 



a perfect fit Q2=1. In fact, error bars in the growth data are not small which means that Q2=0.78 

may actually by much closer to the experimental reproducibility of the measurements. If that's the 

case, this would be good news as it means the method is in fact more accurate than how it has been 

presented in the paper. 

 

6. A general comment is that prediction of growth rate from media composition is not the most 

compelling use case of this method, and I encourage the authors to explore this further. Classic FBA is 

not that bad at predicting this (or at least the authors should compare AMNs with pure FBA 

predictions). The latest E coli model from Monk et al already predicts growth rates of WT and 

knockouts in many growth media with accuracy >90%. The discussion enumerates several problems 

where the algorithm might be useful and would be good to see at least some of these implemented. It 

would eg be useful to see how the AMNs fare when using metabolic models that are not as well 

curated as the E coli one. The latest E coli model from Monk et al has impressive predictive power and 

would be very interesting if AMNs can improve FBA models for less characterized organisms, as there 

is where the community really needs a substantial increase in predictive power. 

 

7. More references to recent work on machine learning + FBA were missing, as well as the early 

attempts to combine the two (eg https://pubmed.ncbi.nlm.nih.gov/18652654/). The current literature 

is quite active as well, eg https://pubmed.ncbi.nlm.nih.gov/33580712/ and 

https://europepmc.org/article/ppr/ppr474123 

 

8. The introduction of the paper is long and the flow is irregular. Particularly because it includes quite 

some content about pros/cons of the method that would fit better in the discussion. The intro should 

just tell us what problem is being solved, how it is currently solved, and how this method offers an 

improvement on current solutions. 

 

9. To assess the power of AMNs, i advise to also benchmark against classic non-neural machine 

learning regressors. The comparison with ANNs is not very fair, because it is likely these will overfit 

the data. For a dataset like in Fig 4 (N=110 measurements with p=10 binary features), it would seem 

unwise to use an ANN of such dimensions for regression. One alternative is to use random forest or 

support vector methods as a benchmark. Another alternative is to use grid search or bayesian 

optimization to determine the ANN hyerparameters and architecture. No details on hyperparameter 

selection were given, which is very unusual for this type of paper. At the minimum, the paper should 

explain how the architecture of the ANNs were chosen and show some evidence that they are better 

than other choices (in terms of Q2 and overfitting, for example). 
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Point-by-point response to reviewers 

 

 

Reviewer #1 (Remarks to the Author): 

 

This paper introduces new methodology utilizing a hybrid of neural networks and metabolic network 

models for improved prediction of experiments involving metabolic networks. In particular, there is 

novelty in the approach of using physics informed neural networks to introduce a method for performing 

backpropagation to train the hybrid models within the context of constrained optimization. The new 

method is likely to have broad applicability to other metabolic networks not considered in the paper, as 

well as gene regulatory network modeling. I have two minor comments/suggestions for the paper: 

 

Response: We thank the Reviewer for the positive feedback. We indeed do hope that our study 

will inspire others to use similar ideas with different metabolic or gene regulatory networks. Also, the 

Reviewer’s comments encouraged us to push further some analyses on our models, and we hope the new  

results show convincingly that our reservoir framework and network initializations are robust. 

 

1) In the results section “AMNs can be used in a reservoir computing framework to enhance the 

predictive power of traditional FBA solvers” the authors utilize their previously trained AMN network 

and parameters as a reservoir within a reservoir computing model. It seems like the authors are 

implying that transfer learning of the learned AMN parameters is crucial for having high predictive 

accuracy of the AMN-reservoir model. However, the usual method for reservoir computing models is 

that the reservoir is simply initialized to completely random weights with some constraints on the 

spectral radius of the matrix encoding the reservoir network. Did the authors try to use random 

initialized weights instead of the AMN pretrained weights? To answer this question, I suggest at least 

some minor computational study showing that it is necessary to use AMN pretrained parameters 

instead of randomly initialized reservoir parameters. Such a study would include various reservoir sizes. 

 

Response: We thank the Reviewer for this interesting remark on our use of reservoirs. First, we 

would like to clarify that we used the term ‘reservoir’ in ‘AMN-Reservoir’ to emphasize the fact that 

parameters are frozen. Yet, as rightly indicated by the Reviewer, the parameters of this part of the model 

are not randomly chosen, but are instead learned from reference FBA simulated data during a pre-training 

step. To directly respond to the Reviewer’s question, we did a new test in which we randomly initialized 

our AMN-Reservoirs with weights drawn from a normal probability law 𝑁(0, 0.05). Then, we used our 

experimental dataset (the 110 growth rates measured in different media), to train a prior layer, as in our 

regular AMN-Reservoir results (shown in Figure 5), to fit and predict the growth rate. This yielded very 

poor performance for both fitting (R2) and predicting (Q2), even with different network parameters 

(number of layers, layer sizes). Results can be found in the Table below. 
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Hidden layer number Hidden layer size R² Q² 

1 50 -2.4 (+/- 0.6) -3.0 (+/- 1.2) 

100 -2.0 (+/- 1.1) -2.7 (+/- 1.6) 

500 -2.1 (+/- 1.4) -2.9 (+/- 2.5) 

5 50 -7.6 (+/- 0.5) -8.3 (+/- 1.9) 

100 -6.8 (+/- 1.2) -7.6 (+/- 2.2) 

500 -7.1 (+/- 1.1) -7.9 (+/- 2.3) 

 

Overall, the above Table shows that training an AMN-Reservoir on FBA simulations is crucial to 

the final performance of the model, and we actually need this pre-training not only to extract the best 

inputs for a CBM framework (Vin) but also for good predictive accuracy. 

 
Manuscript Modifications: We added the following sentences on page 15: “Loosely inspired by 

reservoir computing, we call this architecture ‘AMN-Reservoir’ (Figures 1d and 5a). Let us note nonetheless 
that we are not using usual reservoirs with random weights and a post-processing trainable layer. As a 
matter of fact, we do not reach satisfactory performances when we substitute the AMN-Reservoir weights 
(learned during training) by random weights.” 
 

2) Neural networks are typically initialized with random weights and biases. Thus, there could be 

variability in the results presented in the paper due to neural network initialization. Both the ANN and 

AMN model predictions might be improved by running the training many times, for example 20 or 30 

times, and taking the best performing result. Did the authors perform their study with randomly 

initializing the ANNs several times, or are the results presented from a single initialization? 

 

Response: We wish to clarify that for most results presented in the manuscript, we repeated 

cross-validation several times. For each of these repeats, the random seed was changed, which impacted 

the network initializations (weights and biases) and training set vs. validation set contents. For instance, 

over 3 repeats of 10-fold cross-validations, we generated altogether 30 different training sets, 30 different 

validation sets, and 30 different models with different initializations. Below is a Table showing a statistics 

summary for the Q² of 20 cross-validation repeats with the data and model used to produce Figure 3a. 

We note that the best model (max) yields performances within those indicated on Figure 3a (Q2 = 0.78 ± 

0.03) and carried out on 3 repeats only. 

 

 Q2 

Mean  0.77 

std 0.017 

min 0.73 

25% 0.76 
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50% 0.77 

75% 0.77 

max 0.79 

 

Manuscript Modifications: We added on page 11 the following sentences: ”For displaying 

meaningful results, and to avoid any overfitting bias, we show in Figure 3 predictions for points unseen 

during training. More precisely, we computed the mean and standard deviation of predictions over 3 

repeats of stratified 10-fold cross-validations, each repeat having all points predicted, by aggregating 

validation sets predictions of each fold. Overall, results presented in Figure 3 have been compiled over 

3x10=30 different AMN models, each having different random seeds for the neural layer initialization and 

the train/validation splits”. 
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Reviewer #2 (Remarks to the Author): 

 

The manuscript by Faure and colleagues describes a new approach to modelling metabolic networks 

combining recurrent neural networks and constraint-based modelling (CBM) into a new hybrid 

framework called an artificial metabolic network (AMN). The main advantage of this approach is that 

the input fluxes to CBM can be estimated from data, then FBA applied to predict growth phenotype. The 

authors compare their new framework to more traditional approaches using simulations and a dataset 

comprising of E. coli growth rates in different media compositions. Overall, I really like the idea of using 

RNNs to model the fluxes in metabolic networks. I have some comments below for improvement of the 

manuscript. 

 

Response: We would like to thank the reviewer for the interest and appreciation of our 

manuscript, as well as for the very helpful suggestions to improve readability and a clear presentation of 

our results.  

 

1) I don’t believe the title of the manuscript accurately reflects the main points of the paper. The 

manuscript is not about utilizing metabolic networks for computation. I think the authors should rename 

it to something more appropriate. 

 

Response: We changed the title, which is now focused on the motivation of our work. 

 

Manuscript Modifications: new title ‘A neural-mechanistic hybrid approach improving the 

predictive power of genome-scale metabolic models’ 

 

2) I think a visualisation of key parts of Table 1 as a bar chart (or similar) is needed as the table right 

now is very difficult to compare performance of different architectures. 

  

Response: We agree and replaced Table 1 (now Supplementary Table S1) with a Figure (new 

Figure 2). We show in this Figure loss and Q² values across learning epochs. Thus, the reader can compare 

performances for different inputs (UB, EB, E. coli core/iML1515) and different models (AMN-QP/LP/Wt, 

and ANN). We also added (to now Table S1) information on network architectures and hyperparameters 

(as requested by Reviewer 3). 

 

Manuscript Modifications: We added a new Figure 2 and Table 1 was moved to Supplementary 

Information (now Table S1). 

 

3) In Figure 4 caption, Q2 needs to be redefined. (I presume it is the R2 of the regression).  

 

Response: Indeed, Q2 stands for R2 computed on predictions only. This was mentioned in the 

abbreviation section, but for clarity we now added a definition where the symbol is first used. 

 

Manuscript Modifications: A description of Q2 was added to Figures 2-4 captions. 
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4) All of the results follow from knowing the exact structure of the metabolic network which is almost 

impossible (CBM and FBA of course also have this problem). How robust are the results to sampling of 

the reactions in the models? Is this approach more or less robust than traditional methods? 

 

Response: We fully acknowledge that the metabolic model reconstructions we use for our  hybrid 

models may be imperfect. However, this is a general problem that does not only concern our hybrid 

models, and our modeling approach is  not designed to remedy faulty network structures, at least not in 

the current study. We therefore need to trust metabolic models in the context of hybrid modeling. 

Following the reviewer’s comment, we brainstormed how, in principle, the effects of network 

errors within our approach could be assessed. In theory, we could randomly subsample reactions of a 

metabolic network, obtaining sub-networks of different sizes, and test the performances of hybrid models 

on these. However, the results would be hardly interpretable since metabolic network reconstructions 

rely on long manual curation and random subsampled models would strongly differ from such hand-

curated models in their biological properties. Another, more reasonable test would be to compare 

(curated) networks of different size and to compare the results. As a matter of fact, we present in the 

study results with metabolic networks of different sizes: E. coli core having 154 reactions, and iML1515 

having 3682 reactions; both giving satisfactory performances. Thus, we can assume our method is 

reasonably robust against adding or removing peripheral regions of a network. 

But robustness or our method is not an end in itself. In fact, certain changes (such as individual 

knockouts) should have an impact on our results. A result we added new Figure 4 (responding to Reviewer 

3) showing that classical CBM/FBA is very sensitive to reaction KOs. Indeed,  CBM/FBA often leads to 

infeasible metabolic states that experimentally are feasible (i.e., the organism can actually grow but 

CBM/FBA predicts no growth). With AMNs, we treat the constraints in a more “tolerant” way: the solution 

search space is not strictly constrained, but instead the optimization looks for the best tradeoff on the 

solution fluxes, between fitting experimental data and respecting the metabolic network constraints. As 

a result, we can avoid these infeasible states and enhance the prediction performance. The results shown 

in new Figure 4 demonstrate our AMNs are more robust to reaction KOs than classical FBA when 

considering the experimental data as the ground truth to be respected (AUC=0.9 for AMN vs. AUC=0.71 

for FBA). 

Coming back to point 4, it is interesting to note that we might be able to develop a method to 

enhance metabolic network reconstruction based on quantitative prediction performances. Indeed, the 

hybrid models we developed could be used to screen putative reactions in a metabolic model so that it 

best matches experimental data. 

 

Manuscript Modifications: We added new Figure 4 and the following sentences in the Discussion 

section page 19: “Another possible application of AMN hybrid models is to enhance GEMs reconstruction 

based on quantitative prediction performance. Indeed, the method we developed for KOs could be adapted 

to screen putative reactions in a metabolic model so that its predictions match experimental data. This 

task should be performed after a manual curation, of course, to rely on existing literature knowledge and 

databases”. 
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Reviewer #3 (Remarks to the Author): 

 

This paper proposes a new type of neural network called 'artificial metabolic networks' (ANN) that 

incorporates a genome scale model into the training of neural networks. I read the paper with great 

interest as I have experience in both domains, and the idea of integrating FBA-type models directly into 

neural network training is interesting and novel. The paper, however, is quite unclear in its presentation 

and demonstrating the utility of the method. Critically, I found the motivation for building such models 

unclear, particularly because it is unclear what specific problem in biological modelling 

question/challenge this algorithm intends to solve. The paper is difficult to follow, as in fact four 

different models are presented and it is difficult to follow the relation between these models and why 

they are needed paper.  

Altogether I don't think this paper is suitable for the journal, as the contribution is rather narrow and of 

interest to an FBA-specific audience. As I explain below I would advise the authors to focus on the last 

model 'AMN reservoir' as the main subject, and carry further tests of how this model can outperform 

classic FBA in a wider range of problems (not just prediction of growth rate from media composition). 

This would make the results much more relevant to the general metabolic engineering, synthetic 

biology, and q-bio audiences. 

 

Response:  We thank the reviewer for these helpful comments. In our revised manuscript, we first 

state in the introduction our motivation, focusing on biological questions, and clarify our methods and the 

relationship between the models. Later we extend the usage of our AMN and AMN-Reservoir beyond 

growth rate predictions adding the prediction of other fluxes and the predictions of phenotypes with gene 

KO strains. We also apply our AMN-Reservoir method with a new P. putida experimental dataset.  

Altogether, compared to the previous manuscript version we added three additional experimental 

datasets on which our AMN and AMN-reservoir are tested. Importantly, in addition to new results, we re-

organized the introduction, the Figures and the Discussion, and we moved technical details from the 

Methods to Supplementary Information to make the paper more accessible and convincing to a large and 

diverse scientific audience. 

 

Summary of main modifications: 

- The title was changed and the introduction was re-written to focus on motivation and biological 

questions, text was moved from introduction to the discussion. 

- A new Figure 1 was added (old one can be found the Supplementary Information, Figure S1). 

- A new Figure 2 was added to replace Table 1 now in Supplementary Information (a modified 

version of old Figure 2 can be found in Supplementary Information Figure S6). 

- A new Figure 4 was added presenting results for gene knock-outs experimental data. 

- Figure 5 was completed with new results for P. putida. 

- Mathematical details have been moved from Methods to Supplementary Information. 
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- A new Supplementary Figure (Figure S7) presenting results of a grid search for architectures and 

hyperparameters. 

- A new Supplementary Figure (Figure S8) was added presenting AMN performance on an 

experimental multiple fluxes dataset. 

 

1. The introduction states that AMNs aim to solve some of the caveats of FBA, particularly its inability 

to convert concentrations of growth media components into the boundary fluxes that go into FBA 

calculations. This caveat is real, but I also found that for the results in Fig 4, the media composition was 

featurized as a binary vector, without any information about concentrations. The 4th model 'AMN 

Reservoir' seems to take care of this, but this model is not presented as the main result of the paper. 

Altogether the paper gets confusing at several points and seems appropriate for a readership already 

familiar with the inner details of FBA, not potential users of the algorithm in metabolic 

modelling/engineering.  

 

Response: The Reviewer rightly pointed out that  in the initial version of our manuscript,  inputs 

were presented in a confusing manner. We now clarified this, in particular by adding new Figure 1 detailing 

the inputs for all methods used in the manuscript.  

In Figure 1 (panel a), the inputs for the FBA classical method is the vector Vin of medium uptake 

fluxes bounds. 

In Figure 1 (panel b), the inputs of the three mechanistic models surrogating FBA is a vector of 

initial fluxes values (V0) respecting the boundary constraints (Vin). 

In Figure 1 (panel c), there are two types of inputs for AMNs: (i) exact or upper bounds on uptake 

fluxes when the training set is composed of FBA simulated data (Vin) or (ii) experimental medium 

composition for experimental training sets (Cmed).  

In Figure 1 (panel d), the inputs for the ‘AMN-Reservoir’ are the media compositions (Cmed). The 

AMN-Reservoir method follows a 2-step learning process: first an ANN is trained on FBA simulations then 

on experimental media composition after fixing the parameter of the ANM. After this 2-step learning we 

extract Vin inputs and used it with classical-FBA.  The AMN-Reservoir performances (Figure 5 and 

Supplementary Figure S9) are similar to those of Figure 3 where we directly trained the AMN on 

experimental conditions. However, direct AMN training does not allow us to extract the Vin bound values. 

The medium composition (Cmed) in the new Figure 3 had been labeled ‘concentrations’ in the initial 

version of the manuscript, but as noted by the Reviewer, we used in fact a binary vector only. Considering 

that in our study, all concentrations are equal for all compounds added in the media,  there is no need to 

consider actual concentration values as these turned out to be scaled by the neural layer. Consequently, 

in the current manuscript version, we use the term “composition” instead of “concentrations”. 

 
Manuscript Modifications: We added new Figure 1 along with a new section ‘Overview of AMN 

hybrid models ’ on pages 5 and 6 explaining our methods and their inputs and we change ‘concentration’ 
by ‘composition’ in the whole manuscript and Figures 1, 3, 4, 5. 
 

2. I strongly suggest to focus on AMN reservoir, and take the focus away from the other three algorithms 

AMN-Wt, AMN-LP and AMN-QP. AMN-Wt suffers an important problem when including exact bounds 



 8 

(as well explained by the paper) and AMN-LP vs AMN-QP differ their computational implementation 

(linear vs quadratic programming) with no difference in performance (Fig 4). As it stands this 

presentation is more suited for a computer science audience. 

 

Response: The text and Figures presented in the revised manuscript are now focused on the handling 

of experimental datasets by AMNs and AMN-Reservoir rather than the algorithms of the Wt, LP and QP 

solvers. To that end, and also answering point 6 below, we added 3 new datasets used to train AMN and 

AMN-Reservoir. While details and results regarding the Wt, LP and QP solvers are no longer shown in the 

main manuscript, these methods are still necessary to build AMNs and AMN-Reservoirs and have been 

moved to Supplementary Information. Answering point 4 below, we also moved all technical details and 

mathematical equations on the 3 solvers to Supplementary Information. 

 

Manuscript Modifications: 

- Old Figure 1 is moved in Supplementary Information (Figure S1) along with a detailed explanation 

on the functioning of this solver (pages 2, 3 in Supplementary Information) 

- Old Figure 2 is moved in Supplementary Information (Figure S6) along with a detailed explanation 

in section ‘MM solver benchmarking’. 

- We added to Figure 3 some succinct mathematical details as cartoons for each method. 

- Most of the mathematical expressions regarding Wt, LP and QP solvers have been removed from 

the main manuscript and can now be found in the Supplementary Information (in sections Wt-

solver equations, LP-solver equations and QP-solver equations). 

- Answering point 6, we added new Figure 4 and complemented Figure 5 where AMN and AMN-

Reservoirs are used with new experimental datasets. 

 

3. I struggled to find a clear description of what the inputs to the AMNs are. In all examples it seems to 

be the media composition, but there also extensive references to the boundary fluxes being the inputs. 

This needs to be clarified, perhaps with a figure to replace Figure 1 (which is technical and does not help 

to explain the method). 

 

Response: As already mentioned in our answer to point 1, we replaced our old Figure 1 (now 

Supplementary Figure S1) with a new one thoroughly describing the inputs. Importantly, AMNs are not 

generally restricted to a single input data type used, unlike FBA, and this is one strength of the method. 

Indeed, one could think of other physical parameters such as light exposure, temperature, shaking speed 

etc., as possible inputs for an AMN. In our study, we used exact or upper bounds on uptake fluxes as inputs 

when learning on simulated training sets (Figure 2 and Supplementary Table S1), but also medium 

composition as inputs when learning on experimental data (Figure 3 and Figure 5) and a combination of 

medium composition and the list of gene knockouts (new Figure 4 and Supplementary Figure S8) 

 

Manuscript Modifications: we added new Figure 1 along with a new section ‘Overview of AMN 

hybrid models ’ on pages 5 and 6 explaining our methods and their inputs (cf. point 1) and we modified 

all Figures to clearly identify the inputs of the models. 
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4. The careful calculations of the gradients are quite clear and the attention to rigour is appreciated. 

Many papers would overlook these mathematical details, but they are important as the authors clearly 

appreciate. I found, however, that the mathematical details in the main text tended to obscure the aims 

of the models and what biological problems can be solved, and what people might use this algorithm 

for. 

 

Response: The mathematical details have now been moved in Supplementary Information. 

 

Manuscript Modifications: As already mentioned with point 2, most of the mathematical 

expressions in Methods can now be found in the Supplementary Information (in sections Wt-solver 

equations, LP-solver equations and QP-solver equations). 

 

5. The Q2 accuracies in Figure 4 are not particularly exciting (~0.78 for all methods), but I think a much 

better benchmark would be to compare it to the variability in the experimental repeats as opposed to 

a perfect fit Q2=1. In fact, error bars in the growth data are not small which means that Q2=0.78 may 

actually by much closer to the experimental reproducibility of the measurements. If that's the case, this 

would be good news as it means the method is in fact more accurate than how it has been presented in 

the paper. 

 

Response: We thank the reviewer for this very helpful suggestion about our performance metric. 

Following the reviewer’s recommendation, to account for inter-replicate experimental variability we 

propose an approach that we briefly describe in the manuscript and below. For each experimental data 

point, we randomly draw a new point from a normal distribution with a mean and variance equal to what 

was experimentally determined for the original point. This point can be considered as a ‘resampled’ 

experimental data point. When  we do this for all points and compute the Q², repeating this process 1000 

times, we obtain a mean Q²=0.91 with a standard deviation of 0.02. Consequently, the best ‘experimental 

variability accounting’ Q² is 0.91, and our performance of Q2=0.77 or 0.78 must be compared to this  value. 

In addition, substituting each point by boxes of sizes equal to the variances for both measurement and 

prediction, we find that 79% for AMN-QP (76% for AMN-LP and 74% for AMN-Wt) of the boxes intersect 

the identity line indicating that these points are correctly predicted within the variances. 

 

Manuscript Modifications: In the text presenting Figure 3 on pages 12 and 13 we described the 

above approach taking into account experimental variability in our regression performance metrics. 

 

6. A general comment is that prediction of growth rate from media composition is not the most 

compelling use case of this method, and I encourage the authors to explore this further. Classic FBA is 

not that bad at predicting this (or at least the authors should compare AMNs with pure FBA predictions). 

The latest E coli model from Monk et al already predicts growth rates of WT and knockouts in many 

growth media with accuracy >90%. The discussion enumerates several problems where the algorithm 

might be useful and would be good to see at least some of these implemented. It would eg be useful to 

see how the AMNs fare when using metabolic models that are not as well curated as the E coli one. The 

latest E coli model from Monk et al has impressive predictive power and would be very interesting if 
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AMNs can improve FBA models for less characterized organisms, as there is where the community really 

needs a substantial increase in predictive power. 

 

Response: We added new results comparing AMNs and FBA for several estimation tasks that are 

based on experimental datasets: (i) predicting the effect of gene knocked-out E. coli mutants in terms of 

growth rate and other measured fluxes for two different experimental sets (Figure 4 and Supplementary 

Figure S8), and (ii) predicting the growth rate of P. putida grown on different media (modified Figure 5). 

P. putida was chosen because its iJN1463 model is not as refined as those produced for E. coli and because 

experimental data were available. In both cases, we formulated the problem as a regression task to assess 

the ability of our hybrid models to predict growth rate and other flux values, and alternatively as a 

classification task to determine if our hybrid models could accurately predict growth vs. no growth 

phenotypes. 

In all these regression and classification tasks we found that AMNs and AMN-Reservoirs 

outperform FBA. We also observed that, as mentioned in the Reviewer comment ‘Monk et al. already 

predicts growth rates of WT and knockouts in many growth media with accuracy >90%.’, FBA alone can 

reach good performance when considering qualitative performance only. Indeed, we observe a 0.71 AUC 

with FBA for gene knocked-out E. coli mutants and 83% accuracy for P. putida growth assay (the AMN and 

AMN-Reservoir performances are respectively for the two datasets 0.90 AUC and 96% accuracy). 

Finally, our new Supplementary Figure S8 show AMN performances predicting 31 experimentally 

measured fluxes, with a regression coefficient on validation sets equals to 0.9 (variance weighted average 

Q2). These results are further discussed in Supplementary Information section ‘AMNs benchmarking with 

gene knockouts and multiple measured fluxes’. We would also like to point out that in our original 

manuscript (and in the current version), our AMN-Reservoirs allowed us to compute media uptake fluxes 

that, when plugged into classical FBA, improve the performance of FBA, showing that AMNs can indeed 

accurately predict fluxes other than growth rate. 

 

Manuscript Modifications: We added new figures (Figure 4 and Supplementary Figure S8) and 

complemented Figure 5 with results for P. putida. Classical FBA computations (Figure 4c, Figure 4e, Figure 

5d, Figure 5f) are compared with the AMN performance (Figure 4b, Figure 4d, Figure 5c, Figure 5e). These 

new results are discussed on pages 13-17. We also added the section ‘AMNs benchmarking with gene 

knockouts and multiple measured fluxes’ in Supplementary Information. 

 

7. More references to recent work on machine learning + FBA were missing, as well as the early attempts 

to combine the two (eg https://pubmed.ncbi.nlm.nih.gov/18652654/). The current literature is quite 

active as well, eg https://pubmed.ncbi.nlm.nih.gov/33580712/ and https://europepmc.org/article 

/ppr/ppr474123  

 

Response: We added the above references and others within a new section on the integration of 
ML with FBA models. 

 
Manuscript Modifications: In the introduction, the following text was added on page 3: “To 

improve FBA phenotype predictions, ML approaches have been used to couple experimental data with FBA. 

https://pubmed.ncbi.nlm.nih.gov/18652654/
https://pubmed.ncbi.nlm.nih.gov/33580712/
https://europepmc.org/article%20/ppr/ppr474123
https://europepmc.org/article%20/ppr/ppr474123


 11 

Among published approaches, one can cite Plaimas et al.6 where ML is used after FBA as a post-process to 
classify enzyme essentiality. Similarly, Schinn et al.7 used ML as a post-process to predict amino-acid 
concentrations. Freischem et al.8 computed a mass flow graph running FBA on the E. coli model iML15159 
and used it with a training set of measured growth rates on E. coli gene KO mutants. Several ML methods 
were then utilized in a post-process to classify genes as essential vs. non-essential. As reviewed by Sahu et 
al.10, ML has also been used to preprocess data and extract features prior to running FBA. For instance, 
data obtained from several omics methods can be fed to FBA, after processing multi-omics data via ML11–

13.  In all these previous studies, and as discussed in Sahu et al.10, the interplay between FBA and ML still 
shows a gap: some approaches use ML results as input for FBA, others use FBA results as input for ML, but 
none of them embed FBA into ML, as we do in this study with the Artificial Metabolic Network (AMN) 
hybrid models. “ 

 
8. The introduction of the paper is long and the flow is irregular. Particularly because it includes quite 

some content about pros/cons of the method that would fit better in the discussion. The intro should 

just tell us what problem is being solved, how it is currently solved, and how this method offers an 

improvement on current solutions. 

 

Response: In the revised manuscript, we made the introduction section more concise.  We now 

begin our introduction by outlining the motivation of the work presented. We then state the problem 

from a machine learning perspective, a constraint-based modeling perspective, and a hybrid model 

perspective (providing references to previous work) . We end the introduction stating how our hybrid 

method offers an improvement on current solutions. 

We removed from the introduction the section on pros & cons of the constraint-based FBA-like 

methods, which can now be found in the discussion.  

 

Manuscript Modifications: Our introduction has been re-written and pros & cons of constraint-

based FBA-like methods have been moved to the discussion. 

 

9. To assess the power of AMNs, I advise to also benchmark against classic non-neural machine learning 

regressors. The comparison with ANNs is not very fair, because it is likely these will overfit the data. For 

a dataset like in Figure 4 (N=110 measurements with p=10 binary features), it would seem unwise to 

use an ANN of such dimensions for regression. One alternative is to use random forest or support vector 

methods as a benchmark. Another alternative is to use grid search or bayesian optimization to 

determine the ANN hyperparameters and architecture. No details on hyperparameter selection were 

given, which is very unusual for this type of paper. At the minimum, the paper should explain how the 

architecture of the ANNs were chosen and show some evidence that they are better than other choices 

(in terms of Q2 and overfitting, for example). 

 

Response: Regarding the use of ANN (simple dense neural networks in our study), we would like 

to point out that ANNs were not trained on experimental datasets but with large simulation datasets 

(154000 and 550000 datapoints in new Figure 2 and Supplementary Table S1) to avoid overfitting.  

Following the Reviewer suggestion, we now tested traditional ML methods with our smaller 

experimental datasets. Precisely, using the 110 datapoints of Figure 3, we find with random forest a 
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performance value Q2 = 0.71 and for Figure 4, we find with XGBoost Q2 = 0.75, in both cases using the 

same validation sets as for our AMNs. These values are lower than those returned by AMNs, but more 

importantly, the above traditional ML techniques do not handle mechanistic constraints and consequently 

predicted flux values that cannot be plugged into classical FBA as we do with the AMN-Reservoir. 

As shown in Supplementary Information section ‘AMNs benchmarking varying hyperparameters’ 

and Figure S7, we used a grid search to find the best architectures and hyperparameters. Our AMN 

architectures along with the hyperparameters are now listed in Supplementary Table S1 for all FBA-

simulated training sets and in the captions of Figs 3-5 for experimental training sets. 

Finally, regarding overfitting, we recall that Q2 is a regression coefficient computed on a cross-

validation set or an independent test set (therefore excluding training data), and a Q2 value is usually low 

when the training data are overfitted (high R2 low Q2). 

 
Manuscript Modifications: We added Supplementary Figure S7 showing hyperparameters grid 

search and added architecture and hyperparameters in Table S1 and in the captions of Figures 3-5. We 
also added in the text presenting Figures 3 and 4 the regression performance of respectively Random 
Forests and XGBoost for the same datasets and cross-validation schemes: 

Page 12: “As a matter of comparison, a decision tree algorithm predicting only the growth rate 
with Cmed (the ‘RandomForestRegressor’ function from the sci-kit learn package27 having 1,000 estimators 
and other parameters left with default values) reach a regression performance of 0.71 ± 0.01 with the same 
dataset and cross-validation scheme, indicating AMNs can outperform regular machine learning 
algorithms.” 

Page 14: “The AMN regression performance in Figure 4 (aggregated predictions from a 10-fold 
cross-validation) reaches Q²=0.81 (Figure 4b). For comparison, a decision tree algorithm predicting only 
the growth rate from Cmed and RKO (the ‘XGBRegressor’ function from the XGBoost package29 with all 
parameters set to default values) yields a regression performance of 0.75, with the same cross-validation 
scheme and dataset.” 

 
 



REVIEWERS' COMMENTS 

 

Reviewer #1 (Remarks to the Author): 

 

The authors have satisfactorily addressed my previous concerns. I recommend accepting the paper for 

publication. 

 

 

Reviewer #2 (Remarks to the Author): 

 

My suggestions have all been adequately addressed. I believe the paper is much improved due to the 

comments of all reviewers. 

 

 

Reviewer #3 (Remarks to the Author): 

 

This manuscript is much improved now and the authors have taken on board most of our feedback, 

which is great. The contents and message are more streamlined now and I do not have any further 

comments on the main text. Regarding the abstract, I suggest to simplify the text and avoid listing 

too many performance metrics. 
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Point-by-point response to reviewers 

 

Reviewer #1 (Remarks to the Author): 

The authors have satisfactorily addressed my previous concerns. I recommend accepting the 
paper for publication. 

We thank the Reviewer for this positive feedback.  

 

Reviewer #2 (Remarks to the Author): 

My suggestions have all been adequately addressed. I believe the paper is much improved due 
to the comments of all reviewers. 

We would like to thank the Reviewer and fully agree the paper has been improved taking into 
account the reviewers’ comments.  

 

Reviewer #3 (Remarks to the Author): 

This manuscript is much improved now and the authors have taken on board most of our 
feedback, which is great. The contents and message are more streamlined now and I do not have any 
further comments on the main text. Regarding the abstract, I suggest to simplify the text and avoid 
listing too many performance metrics. 

We thank the Reviewer for these comments. We have removed performance metrics from the 
abstract, and per editorial request, shorten the abstract to less than 150 words. 
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